Data driven forecasting of aperiodic motions of non-autonomous systems
نویسندگان
چکیده
In the present effort, a data-driven modeling approach is undertaken to forecast aperiodic responses of non-autonomous systems. As representative system, harmonically forced Duffing oscillator considered. Along with it, an experimental prototype studied. Data corresponding chaotic motions are obtained through simulations oscillators hardening and softening characteristics experiments bistable oscillator. Portions these datasets used train neural machine make response predictions forecasts for on attractors. The constructed by using deep recurrent network architecture. conducted different numerical time-series data confirm effectiveness forecasting system responses.
منابع مشابه
Robust stabilization of a class of three-dimensional uncertain fractional-order non-autonomous systems
This paper concerns the problem of robust stabilization of uncertain fractional-order non-autonomous systems. In this regard, a single input active control approach is proposed for control and stabilization of three-dimensional uncertain fractional-order systems. The robust controller is designed on the basis of fractional Lyapunov stability theory. Furthermore, the effects of model uncertai...
متن کاملMULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS
In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.
متن کاملData-driven forecasting of solar irradiance
This paper describes a flexible approach to short term prediction of meteorological variables. In particular, we focus on the prediction of the solar irradiance one hour ahead, a task that has high practical value when optimizing solar energy resources. As Défi EGC 2018 provides us with time series data for multiple sensors (e.g. solar irradiance, temperature, hygrometry), recorded every minute...
متن کاملProxy Non-Discrimination in Data-Driven Systems
Machine learnt systems inherit biases against protected classes, historically disparaged groups, from training data. Usually, these biases are not explicit, they rely on subtle correlations discovered by training algorithms, and are therefore difficult to detect. We formalize a notion of proxy discrimination in data-driven systems, a class of properties indicative of bias, as the presence of pr...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos
سال: 2021
ISSN: ['1527-2443', '1089-7682', '1054-1500']
DOI: https://doi.org/10.1063/5.0045004